Ok

By continuing your visit to this site, you accept the use of cookies. These ensure the smooth running of our services. Learn more.

May 29, 2013

Symposium on Positive Technology @ Third World Congress on Positive Psychology

We hope you will join us in Los Angeles, California, on Saturday June 29th for attending the Symposium on Positive Technology.

The special session features interventions by key PT researchers and is a great opportunity to meet, share ideas and build the future of this exciting research field!

Download the conference program here (PDF)

Third World Congress on Positive Psychology Banner

May 26, 2013

Cross-Brain Neurofeedback: Scientific Concept and Experimental Platform

Cross-Brain Neurofeedback: Scientific Concept and Experimental Platform.

PLoS One. 2013;8(5):e64590

Authors: Duan L, Liu WJ, Dai RN, Li R, Lu CM, Huang YX, Zhu CZ

Abstract. The present study described a new type of multi-person neurofeedback with the neural synchronization between two participants as the direct regulating target, termed as "cross-brain neurofeedback." As a first step to implement this concept, an experimental platform was built on the basis of functional near-infrared spectroscopy, and was validated with a two-person neurofeedback experiment. This novel concept as well as the experimental platform established a framework for investigation of the relationship between multiple participants' cross-brain neural synchronization and their social behaviors, which could provide new insight into the neural substrate of human social interactions.

A Hybrid Brain-Computer Interface-Based Mail Client

A Hybrid Brain-Computer Interface-Based Mail Client.

Comput Math Methods Med. 2013;2013:750934

Authors: Yu T, Li Y, Long J, Li F

Abstract. Brain-computer interface-based communication plays an important role in brain-computer interface (BCI) applications; electronic mail is one of the most common communication tools. In this study, we propose a hybrid BCI-based mail client that implements electronic mail communication by means of real-time classification of multimodal features extracted from scalp electroencephalography (EEG). With this BCI mail client, users can receive, read, write, and attach files to their mail. Using a BCI mouse that utilizes hybrid brain signals, that is, motor imagery and P300 potential, the user can select and activate the function keys and links on the mail client graphical user interface (GUI). An adaptive P300 speller is employed for text input. The system has been tested with 6 subjects, and the experimental results validate the efficacy of the proposed method.

Using Music as a Signal for Biofeedback

Using Music as a Signal for Biofeedback.

Int J Psychophysiol. 2013 Apr 23;

Authors: Bergstrom I, Seinfeld S, Arroyo-Palacios J, Slater M, Sanchez-Vives MV

Abstract. Studies on the potential benefits of conveying biofeedback stimulus using a musical signal have appeared in recent years with the intent of harnessing the strong effects that music listening may have on subjects. While results are encouraging, the fundamental question has yet to be addressed, of how combined music and biofeedback compares to the already established use of either of these elements separately. This experiment, involving young adults (N=24), compared the effectiveness at modulating participants' states of physiological arousal of each of the following conditions: A) listening to pre-recorded music, B) sonification biofeedback of the heart rate, and C) an algorithmically modulated musical feedback signal conveying the subject's heart rate. Our hypothesis was that each of the conditions (A), (B) and (C) would differ from the other two in the extent to which it enables participants to increase and decrease their state of physiological arousal, with (C) being more effective than (B), and both more than (A). Several physiological measures and qualitative responses were recorded and analyzed. Results show that using musical biofeedback allowed participants to modulate their state of physiological arousal at least equally well as sonification biofeedback, and much better than just listening to music, as reflected in their heart rate measurements, controlling for respiration-rate. Our findings indicate that the known effects of music in modulating arousal can therefore be beneficially harnessed when designing a biofeedback protocol.

Application of alpha/theta neurofeedback and heart rate variability training to young contemporary dancers: State anxiety and creativity.

Application of alpha/theta neurofeedback and heart rate variability training to young contemporary dancers: State anxiety and creativity.

Int J Psychophysiol. 2013 May 15;

Authors: Gruzelier JH, Thompson T, Redding E, Brandt R, Steffert T

Abstract. As one in a series on the impact of EEG-neurofeedback in the performing arts, we set out to replicate a previous dance study in which alpha/theta (A/T) neurofeedback and heart rate variability (HRV) biofeedback enhanced performance in competitive ballroom dancers compared with controls. First year contemporary dance conservatoire students were randomised to the same two psychophysiological interventions or a choreology instruction comparison group or a no-training control group. While there was demonstrable neurofeedback learning, there was no impact of the three interventions on dance performance as assessed by four experts. However, HRV training reduced anxiety and the reduction correlated with improved technique and artistry in performance; the anxiety scale items focussed on autonomic functions, especially cardiovascular activity. In line with the putative impact of hypnogogic training on creativity A/T training increased cognitive creativity with the test of unusual uses, but not insight problems. Methodological and theoretical implications are considered.

May 24, 2013

New LinkedIn group on Positive Technology

Are you interested in Positive Technology? Then come and join us on LinkedIn!

Our new group is the place to share expertise and brilliant ideas on positive applications of technology!

May 06, 2013

An app for the mind

With the rapid adoption of mobile technologies and the proliferation of smartphones, new opportunities are emerging for the delivery of mental health services. And indeed, psychologists are starting to realize this potential: a recent survey by Luxton and coll. (2011) identified over 200 smartphone apps focused on behavioral health, covering a wide range of disorders, including developmental disorders, cognitive disorders, substance-related disorders as well as psychotic and mood disorders. These applications are used in behavioral health for several purposes, the most common of which are health education, assessment, homework and monitoring progress of treatment.    

For example, T2 MoodTracker  is an application that allows users to self-monitor, track and reference their emotional experience over a period of days, weeks and months using a visual analogue rating scale. Using this application, patients can self-monitor emotional experiences associated with common deployment-related behavioral health issues like post-traumatic stress, brain injury, life stress, depression and anxiety. Self-monitoring results can be used as self-help tool or they shared with a therapist or health care professional, providing a record of the patient’s emotional experience over a selected time frame.

lg-icon-moodtracker3.png

Measuring objective correlatives of subjectively-reported emotional states is an important concern in research and clinical applications. Physiological and physical activity information provide mental health professionals with integrative measures, which can be used to improve understanding of patients’ self-reported feelings and emotions.

The combined use of wearable biosensors and smart phones offers unprecedented opportunities to collect, elaborate and transmit real-time body signals to the remote therapist. This approach is also useful to allow the patient collecting real-time information related to his/her health conditions and identifying specific trends. Insights gained by means of this feedback can empower the user to self-engage and manage his/her own health status, minimizing any interaction with other health care actors. One such tool is MyExperience, an open-source mobile platform that allows the combination of sensing and self-report to collect both quantitative and qualitative data on user experience and activity.

front_image_blog.png

Other applications are designed to empower users with information for making better decisions, preventing life-style related conditions and preserving/enhancing cognitive performance. For example, BeWell monitors different user activities (sleep, physical activity, social interaction) and provides feedback to promote healthier lifestyle decisions.  

Besides applications in mental health and wellbeing, smartphones are increasingly used in psychological research. The potential of this approach has been recently discussed by Geoffrey Miller in a review entitled “The Smartphone Psychology Manifesto”. According to Miller, smartphones can be effectively used to collect large quantities of ecologically valid data, in a easier and quicker way than other available research methodologies. Since the smartphone is becoming one of the most pervasive devices in our lives, it provides access to domains of behavioral data not previously available without either constant observation or reliance on self-reports only.

For example, the INTERSTRESS project, which I am coordinating, developed PsychLog, a psycho-physiological mobile data collection platform for mental health research. This free, open source experience sampling platform for Windows mobile allows collecting self-reported psychological data as well as ECG data via a bluetooth ECG sensor unit worn by the user. Althought PsychLog provides less features with respect to more advanced experience sampling platform, it can be easily configured also by researchers with no programming skills.

In summary, the use of smartphones can have a significant impact on both psychological research and practice. However, there is still limited evidence of the effectiveness of this approach. As for other mHealth applications, few controlled trials have tested the potential of mobile technology interventions in improving mental health care delivery processes. Therefore, further research is needed in order to determine the real cost-effectiveness of mobile cybertherapy applications.