Oct 12, 2014

New Material May Help Us To Breathe Underwater

Scientists in Denmark announced they have developed a substance that absorbs, stores and releases huge amounts of oxygen.

The substance is so effective that just a few grains are capable of storing enough oxygen for a single human breath while a bucket full of the new material could capture an entire room of O2.

With the new material there are hopes those requiring medical oxygen might soon be freed from carrying bulky tanks, while SCUBA divers might also be able to use the material to absorb oxygen from water, allowing them to stay submerged for significantly longer.

The substance was developed by tinkering with the molecular structure of cobalt, a chemical element that when found in meteoric iron, resembles a silver-gray metal.
Read More: University of Southern Denmark

Oct 06, 2014

Is the metaverse still alive?

In the last decade, online virtual worlds such as Second Life and alike have become enormously popular. Since their appearance on the technology landscape, many analysts regarded shared 3D virtual spaces as a disruptive innovation, which would have rendered the Web itself obsolete.

This high expectation attracted significant investments from large corporations such as IBM, which started building their virtual spaces and offices in the metaverse. Then, when it became clear that these promises would not be kept, disillusionment set in and virtual worlds started losing their edge. However, this is not a new phenomenon in high-tech, happening over and over again.

The US consulting company Gartner has developed a very popular model to describe this effect, called the “Hype Cycle”. The Hype Cycle provides a graphic representation of the maturity and adoption of technologies and applications.

It consists of five phases, which show how emerging technologies will evolve.

In the first, “technology trigger” phase, a new technology is launched which attracts the interest of media. This is followed by the “peak of inflated expectations”, characterized by a proliferation of positive articles and comments, which generate overexpectations among users and stakeholders.

In the next, “trough of disillusionment” phase, these exaggerated expectations are not fulfilled, resulting in a growing number of negative comments generally followed by a progressive indifference.

In the “slope of enlightenment” the technology potential for further applications becomes more broadly understood and an increasing number of companies start using it.

In the final, “plateau of productivity” stage, the emerging technology established itself as an effective tool and mainstream adoption takes off. 

So what stage in the hype cycle are virtual worlds now?

After the 2006-2007 peak, metaverses entered the downward phase of the hype cycle, progressively loosing media interest, investments and users. Many high-tech analysts still consider this decline an irreversible process.

However, the negative outlook that headed shared virtual worlds into the trough of disillusionment maybe soon reversed. This is thanks to the new interest in virtual reality raised by the Oculus Rift (recently acquired by Facebook for $2 billion), Sony’s Project Morpheus and alike immersive displays, which are still at the takeoff stage in the hype cycle.

Oculus Rift's chief scientist Michael Abrash makes no mystery of the fact that his main ambition has always been to build a metaverse such the one described in Neal Stephenson's (1992) cyberpunk novel Snow Crash. As he writes on the Oculus blog

"Sometime in 1993 or 1994, I read Snow Crash and for the first time thought something like the Metaverse might be possible in my lifetime."

Furthermore, despite the negative comments and deluded expectations, the metaverse keeps attracting new users: in its 10th anniversary on June 23rd 2013, an infographic reported that Second Life had over 1 million users visit around the world monthly, more than 400,000 new accounts per month, and 36 million registered users.

So will Michael Abrash’s metaverse dream come true? Even if one looks into the crystal ball of the hype cycle, the answer is not easily found.

Aug 03, 2014

Fly like a Birdly

Birdly is a full body, fully immersive, Virtual Reality flight simulator developed at the Zurich University of the Arts (ZHdK). With Birdly, you can embody an avian creature, the Red Kite, visualized through Oculus Rift, as it soars over the 3D virtual city of San Francisco, heightened by sonic, olfactory, and wind feedback.

Apr 06, 2014

Glass brain flythrough: beyond neurofeedback

Via Neurogadget

Researchers have developed a new way to explore the human brain in virtual reality. The system, called Glass Brain, which is developed by Philip Rosedale, creator of the famous game Second Life, and Adam Gazzaley, a neuroscientist at the University of California San Francisco, combines brain scanning, brain recording and virtual reality to allow a user to journey through a person’s brain in real-time.

Read the full story on Neurogadget

Feb 16, 2014

How much science is there?

The accelerating pace of scientific publishing and the rise of open access, as depicted by xkcd.com cartoonist Randall Munroe.

Feb 09, 2014

Nick Bostrom: The intelligence explosion hypothesis

Via IEET

Philosopher Nick Bostrom is a Swedish at the University of Oxford known for his work on existential risk and the anthropic principle covered in books such as Global Catastrophic Risks, Anthropic Bias and Human Enhancement. He holds a PhD from the London School of Economics . He is currently the director of both The Future of Humanity Institute and the Programme on the Impacts of Future Technology as part of the Oxford Martin School at Oxford University.

Dec 22, 2013

Cubli

Researchers at the Institute for Dynamic Systems and Control, ETH Zurich, Switzerland developed a small cube (cm 15X15X15) that can jump up and balance on its corner. Reaction wheels mounted on three faces of the cube rotate at high angular velocities and then brake suddenly, causing the Cubli to jump up. Once the Cubli has almost reached the corner stand up position, controlled motor torques are applied to make it balance on its corner. In addition to balancing, the motor torques can also be used to achieve a controlled fall such that the Cubli can be commanded to fall in any arbitrary direction. Combining these three abilities - jumping up, balancing, and controlled falling - the Cubli is able to 'walk'.

20:59 Posted in Blue sky | Permalink | Comments (0)

Oct 31, 2013

Daniel Dennett – If Brains Are Computers, What Kind Of Computers Are They?

Source: Future of Humanity Institute

23:33 Posted in Blue sky | Permalink | Comments (0)

Jul 23, 2013

Augmented Reality - Projection Mapping

Augmented Reality - Projection Mapping from Dane Luttik on Vimeo.

The beginning of infinity

A little old video but still inspiring...

THE BEGINNING OF INFINITY from Jason Silva on Vimeo.

22:46 Posted in Blue sky | Permalink | Comments (0)

Aug 04, 2012

Is Little Printer the next (little) thing?

Yes! Definitely yes!

Little Printer lives in your home, bringing you news, puzzles and gossip from your friends. Use your smartphone to set up subscriptions and Little Printer will gather them together to create a timely, beautiful mini-newspaper.

For more see:
bergcloud.com/littleprinter/

Video

19:34 Posted in Blue sky | Permalink | Comments (0)

The Virtual Brain

The Virtual Brain project promises "to deliver the first open simulation of the human brain based on individual large-scale connectivity", by "employing novel concepts from neuroscience, effectively reducing the complexity of the brain simulation while still keeping it sufficiently realistic".

The Virtual Brain team includes well-recognized neuroscientists from all over the world. In the video below, Dr. Randy McIntosh explains what the project is about.

First teaser release of The Virtual Brain software suite is available for download – for Windows, Mac and Linux: http://thevirtualbrain.org/

Mar 31, 2012

Hyper(reality) - The Last Tuesday Society

Project's description: Embodying the concept theorized by hyperrealism theories, the helmet provides a digital experience, immersing the user in an alternative version of reality seen through the helmet. Instead of having a static point of view, the user becomes able to navigate through the 3D environment enabling new behaviours specific to the hyperreal world while still having to physically interact with the real environment. Thus it creates an odd interface between these two states.

Hyper(reality) - The Last Tuesday Society from Maxence

The suit is composed of an helmet with high definition video glasses, an arduino glove with force sensors controlling the 3D view and a harness for the kinect. Each user experience is recorded and analysed, portraiting user behaviours during the experience. Immersed into this dream-like virtual space, the user gradually discovers the collection of curiosities. Behaviours are being modified, the notion of scale is being distorted, all this pushing the boundaries of the physical space. Venitian masks, stuffed animals and old scultpures start floating in the air around the user creating a new sensorial experience.


OutRun: Augmented Reality Driving Video Game

Mar 11, 2012

Augmenting cognition: old concept, new tools

The increasing miniaturization and computing power of information technology devices allow new ways of interaction between human brains and computers, progressively blurring the boundaries between man and machine. An example is provided by brain-computer interface systems, which allow users to use their brain to control the behavior of a computer or of an external device such as a robotic arm (in this latter case, we speak of “neuroprostetics”).

 

The idea of using information technologies to augment cognition, however, is not new, dating back in 1950’s and 1960’s. One of the first to write about this concept was british psychiatrist William Ross Ashby.

In his Introduction to Cybernetics (1956), he described intelligence as the “power of appropriate selection,” which could be amplified by means of technologies in the same way that physical power is amplified. A second major conceptual contribution towards the development of cognitive augmentation was provided few years later by computer scientist and Internet pioneer Joseph Licklider, in a paper entitled Man-Computer Symbiosis (1960).

In this article, Licklider envisions the development of computer technologies that will enable users “to think in interaction with a computer in the same way that you think with a colleague whose competence supplements your own.” According to his vision, the raise of computer networks would allow to connect together millions of human minds, within a “'thinking center' that will incorporate the functions of present-day libraries together with anticipated advances in information storage and retrieval.” This view represent a departure from the prevailing Artificial Intelligence approach of that time: instead of creating an artificial brain, Licklider focused on the possibility of developing new forms of interaction between human and information technologies, with the aim of extending human intelligence.

A similar view was proposed in the same years by another computer visionnaire, Douglas Engelbart, in its famous 1962 article entitled Augmenting Human Intellect: A Conceptual Framework.

In this report, Engelbart defines the goal of intelligence augmentation as “increasing the capability of a man to approach a complex problem situation, to gain comprehension to suit his particular needs, and to derive solutions to problems. Increased capability in this respect is taken to mean a mixture of the following: more-rapid comprehension, better comprehension, the possibility of gaining a useful degree of comprehension in a situation that previously was too complex, speedier solutions, better solutions, and the possibility of finding solutions to problems that before seemed insoluble (…) We do not speak of isolated clever tricks that help in particular situations.We refer to away of life in an integrated domain where hunches, cut-and-try, intangibles, and the human ‘feel for a situation’ usefully co-exist with powerful concepts, streamlined terminology and notation, sophisticated methods, and high-powered electronic aids.”

These “electronic aids” nowdays include any kind of harware and software computing devices used i.e. to store information in external memories, to process complex data, to perform routine tasks and to support decision making. However, today the concept of cognitive augmentation is not limited to the amplification of human intellectual abilities through external hardware. As recently noted by Nick Bostrom and Anders Sandberg (Sci Eng Ethics 15:311–341, 2009), “What is new is the growing interest in creating intimate links between the external systems and the human user through better interaction. The software becomes less an external tool and more of a mediating ‘‘exoself’’. This can be achieved through mediation, embedding the human within an augmenting ‘‘shell’’ such as wearable computers (…) or virtual reality, or through smart environments in which objects are given extended capabilities” (p. 320).

At the forefront of this trend is neurotechnology, an emerging research and development field which includes technologies that are specifically designed with the aim of improving brain function. Examples of neurotechnologies include brain training games such as BrainAge and programs like Fast ForWord, but also neurodevices used to monitor or regulate brain activity, such as deep brain stimulators (DBS), and smart prosthetics for the replacement of impaired sensory systems (i.e. cochlear or retinal implants).

Clearly, the vision of neurotechnology is not free of issues. The more they become powerful and sophisticated, the more attention should be dedicated to understand the socio-economic, legal and ethical implications of their applications in various field, from medicine to neuromarketing.


 

Jan 27, 2012

Positive Technology: Using Interactive Technologies to Promote Positive Functioning

Positive Technology: Using Interactive Technologies to Promote Positive Functioning

G. Riva, R.M. Baños, C. Botella, B.K. Wiederhold, A. Gaggioli

Cyberpsychology, Behavior, and Social Networking (Online Ahead of Print: December 9, 2011) DOI

Abstract. It is generally assumed that technology assists individuals in improving the quality of their lives. However, the impact of new technologies and media on well-being and positive functioning is still somewhat controversial. In this paper, we contend that the quality of experience should become the guiding principle in the design and development of new technologies, as well as a primary metric for the evaluation of their applications. The emerging discipline of Positive Psychology provides a useful framework to address this challenge. Positive Psychology is the scientific study of optimal human functioning and flourishing. Instead of drawing on a “disease model” of human behavior, it focuses on factors that enable individuals and communities to thrive and build the best in life. In this paper, we propose the “Positive Technology” approach—the scientific and applied approach to the use of technology for improving the quality of our personal experience through its structuring, augmentation, and/or replacement—as a way of framing a suitable object of study in the field of cyberpsychology and human–computer interaction. Specifically, we suggest that it is possible to use technology to influence three specific features of our experience—affective quality, engagement/actualization, and connectedness—that serve to promote adaptive behaviors and positive functioning. In this framework, positive technologies are classified according to their effects on a specific feature of personal experience. Moreover, for each level, we have identified critical variables that can be manipulated to guide the design and development of positive technologies.

Dec 31, 2011

10 videos on our near future

Happy New Year to all PT readers! - Andrea Gaggioli
 
 

10:41 Posted in Blue sky | Permalink | Comments (0)

Nov 26, 2011

Curiosity (did not) kill the cat

Today at 10:02 am the latest Mars Rover, Curiosity was launched into the deep space. The $2.5 billion exploratory system started its eight month journey to Mars where it will spend another two years researching the conditions for (past or future) life. The nuclear-powered Curiosity is much larger than any previous Mars Rover and five times heavier. Its equipment includes a drill on a 2.1-meter arm and a laser to vaporize rocks for easier onboard analysis.

When I first watched this video this morning I was really amazed by the technology, the landing strategy and the terrific level of sophistication of the rover system. Then I thought to myself - if there is enough brainpower on earth to make this vision a reality, then it must be also possible to workout a solution for the global economy!

Nov 06, 2011

A view of future productivity

A future vision of productivity from Microsoft

Jul 27, 2011

A robot that flies like a bird

The poetry of technology..

1 2 Next