Aug 31, 2014

Self-regulation of human brain activity using simultaneous real-time fMRI and EEG neurofeedback

Self-regulation of human brain activity using simultaneous real-time fMRI and EEG neurofeedback.

Zotev V1,Phillips R, Yuan H, Misaki M, Bodurka J. Neuroimage. 2014 Jan 15;85 Pt 3:985-95. doi: 10.1016/j.neuroimage.2013.04.126. Epub 2013 May 11.

Abstract. Neurofeedback is a promising approach for non-invasive modulation of human brain activity with applications for treatment of mental disorders and enhancement of brain performance. Neurofeedback techniques are commonly based on either electroencephalography (EEG) or real-time functional magnetic resonance imaging (rtfMRI). Advances in simultaneous EEG-fMRI have made it possible to combine the two approaches. Here we report the first implementation of simultaneous multimodal rtfMRI and EEG neurofeedback (rtfMRI-EEG-nf). It is based on a novel system for real-time integration of simultaneous rtfMRI and EEG data streams. We applied the rtfMRI-EEG-nf to training of emotional self-regulation in healthy subjects performing a positive emotion induction task based on retrieval of happy autobiographical memories. The participants were able to simultaneously regulate their BOLD fMRI activation in the left amygdala and frontal EEG power asymmetry in the high-beta band using the rtfMRI-EEG-nf. Our proof-of-concept results demonstrate the feasibility of simultaneous self-regulation of both hemodynamic (rtfMRI) and electrophysiological (EEG) activities of the human brain. They suggest potential applications of rtfMRI-EEG-nf in the development of novel cognitive neuroscience research paradigms and enhanced cognitive therapeutic approaches for major neuropsychiatric disorders, particularly depression.

Biofeedback-based training for stress management in daily hassles: an intervention study.

Biofeedback-based training for stress management in daily hassles: an intervention study.

Brain Behav. 2014 Jul;4(4):566-579

Authors: Kotozaki Y, Takeuchi H, Sekiguchi A, Yamamoto Y, Shinada T, Araki T, Takahashi K, Taki Y, Ogino T, Kiguchi M, Kawashima R

Abstract. BACKGROUND: The day-to-day causes of stress are called daily hassles. Daily hassles are correlated with ill health. Biofeedback (BF) is one of the tools used for acquiring stress-coping skills. However, the anatomical correlates of the effects of BF with long training periods remain unclear. In this study, we aimed to investigate this. METHODS: PARTICIPANTS WERE ASSIGNED RANDOMLY TO TWO GROUPS: the intervention group and the control group. Participants in the intervention group performed a biofeedback training (BFT) task (a combination task for heart rate and cerebral blood flow control) every day, for about 5 min once a day. The study outcomes included MRI, psychological tests (e.g., Positive and Negative Affect Schedule, Center for Epidemiologic Studies Depression Scale, and Brief Job Stress Questionnaire), and a stress marker (salivary cortisol levels) before (day 0) and after (day 28) the intervention. RESULTS: We observed significant improvements in the psychological test scores and salivary cortisol levels in the intervention group compared to the control group. Furthermore, voxel-based morphometric analysis revealed that compared to the control group, the intervention group had significantly increased regional gray matter (GM) volume in the right lateral orbitofrontal cortex, which is an anatomical cluster that includes mainly the left hippocampus, and the left subgenual anterior cingulate cortex. The GM regions are associated with the stress response, and, in general, these regions seem to be the most sensitive to the detrimental effects of stress. CONCLUSIONS: Our findings suggest that our BFT is effective against the GM structures vulnerable to stress.

Aug 03, 2014

Modulation of functional network with real-time fMRI feedback training of right premotor cortex activity

Modulation of functional network with real-time fMRI feedback training of right premotor cortex activity.

Neuropsychologia. 2014 Jul 21;

Authors: Hui M, Zhang H, Ge R, Yao L, Long Z

Abstract. Although the neurofeedback of real-time fMRI can reportedly enable people to gain control of the activity in the premotor cortex (PMA) during motor imagery, it is unclear how the neurofeedback training of PMA affect the motor network engaged in the motor execution (ME) and imagery (MI) task. In this study, we investigated the changes in the motor network engaged in both ME and MI task induced by real-time neurofeedback training of the right PMA. The neurofeedback training induced changes in activity of the ME-related motor network as well as alterations in the functional connectivity of both the ME-related and MI-related motor networks. Especially, the percent signal change of the right PMA in the last training run was found to be significantly correlated with the connectivity between the right PMA and the left posterior parietal lobe (PPL) during the pre-training MI run, post-training MI run and the last training run. Moreover, the increase in the tapping frequency was significantly correlated with the increase of connectivity between the right cerebellum and the primary motor area / primary sensory area (M1/S1) of the ME-related motor network after neurofeedback training. These findings show the importance of the connectivity between the right PMA and left PPL of the MI network for the up-regulation of the right PMA as well as the critical role of connectivity between the right cerebellum and M1/S1 of the ME network in improving the behavioral performance.

Jul 29, 2014

Real-time functional MRI neurofeedback: a tool for psychiatry

Real-time functional MRI neurofeedback: a tool for psychiatry.

Curr Opin Psychiatry. 2014 Jul 14;

Authors: Kim S, Birbaumer N

Abstract. PURPOSE OF REVIEW: The aim of this review is to provide a critical overview of recent research in the field of neuroscientific and clinical application of real-time functional MRI neurofeedback (rtfMRI-nf).
RECENT FINDINGS: RtfMRI-nf allows self-regulating activity in circumscribed brain areas and brain systems. Furthermore, the learned regulation of brain activity has an influence on specific behaviors organized by the regulated brain regions. Patients with mental disorders show abnormal activity in certain regions, and simultaneous control of these regions using rtfMRI-nf may affect the symptoms of related behavioral disorders. SUMMARY: The promising results in clinical application indicate that rtfMRI-nf and other metabolic neurofeedback, such as near-infrared spectroscopy, might become a potential therapeutic tool. Further research is still required to examine whether rtfMRI-nf is a useful tool for psychiatry because there is still lack of knowledge about the neural function of certain brain systems and about neuronal markers for specific mental illnesses.

Apr 06, 2014

Glass brain flythrough: beyond neurofeedback

Via Neurogadget

Researchers have developed a new way to explore the human brain in virtual reality. The system, called Glass Brain, which is developed by Philip Rosedale, creator of the famous game Second Life, and Adam Gazzaley, a neuroscientist at the University of California San Francisco, combines brain scanning, brain recording and virtual reality to allow a user to journey through a person’s brain in real-time.

Read the full story on Neurogadget

Mar 02, 2014

3D Thought controlled environment via Interaxon

In this demo video, artist Alex McLeod shows an environment he designed for Interaxon to use at CES in 2011 interaxon.ca/CES#.

The glasses display the scene in 3D and attaches sensors read users brain-states which control elements of the scene.

3D Thought controlled environment via Interaxon from Alex McLeod on Vimeo.

Jan 23, 2014

Mobile biofeedback of heart rate variability in patients with diabetic polyneuropathy: a preliminary study

Mobile biofeedback of heart rate variability in patients with diabetic polyneuropathy: a preliminary study.

Clin Physiol Funct Imaging. 2014 Jan 20;

Authors: Druschky K, Druschky A

Abstract. Biofeedback of heart rate variability (HRV) was applied to patients with diabetic polyneuropathy using a new mobile device allowing regularly scheduled self-measurements without the need of visits to a special autonomic laboratory. Prolonged generation of data over an eight-week period facilitated more precise investigation of cardiac autonomic function and assessment of positive and negative trends of HRV parameters over time. Statistical regression analyses revealed significant trends in 11 of 17 patients, while no significant differences were observed when comparing autonomic screening by short-term HRV and respiratory sinus arrhythmia at baseline and after the 8 weeks training period. Four patients showed positive trends of HRV parameters despite the expected progression of cardiac autonomic dysfunction over time. Patient compliance was above 50% in all but two patients. The results of this preliminary study indicate a good practicality of the handheld device and suggest a potential positive effect on cardiac autonomic neuropathy in patients with type 2 diabetes.

Dec 24, 2013

Evaluation of neurofeedback in ADHD: The long and winding road.

Evaluation of neurofeedback in ADHD: The long and winding road.

Biol Psychol. 2013 Dec 6;

Authors: Arns M, Heinrich H, Strehl U

Among the clinical applications of neurofeedback, most research has been conducted in ADHD. As an introduction a short overview of the general history of neurofeedback will be given, while the main part of the paper deals with a review of the current state of neurofeedback in ADHD. A meta-analysis on neurofeedback from 2009 found large effect sizes for inattention and impulsivity and medium effects sizes for hyperactivity. Since 2009 several new studies, including 4 placebo-controlled studies, have been published. These latest studies are reviewed and discussed in more detail. The review focuses on studies employing 1) semi-active, 2) active, and 3) placebo-control groups. The assessment of specificity of neurofeedback treatment in ADHD is discussed and it is concluded that standard protocols such as theta/beta, SMR and slow cortical potentials neurofeedback are well investigated and have demonstrated specificity. The paper ends with an outlook on future questions and tasks. It is concluded that future controlled clinical trials should, in a next step, focus on such known protocols, and be designed along the lines of learning theory.

Dec 08, 2013

Real-Time fMRI Pattern Decoding and Neurofeedback Using FRIEND: An FSL-Integrated BCI Toolbox

Real-Time fMRI Pattern Decoding and Neurofeedback Using FRIEND: An FSL-Integrated BCI Toolbox.

PLoS One. 2013;8(12):e81658

Authors: Sato JR, Basilio R, Paiva FF, Garrido GJ, Bramati IE, Bado P, Tovar-Moll F, Zahn R, Moll J

Abstract. The demonstration that humans can learn to modulate their own brain activity based on feedback of neurophysiological signals opened up exciting opportunities for fundamental and applied neuroscience. Although EEG-based neurofeedback has been long employed both in experimental and clinical investigation, functional MRI (fMRI)-based neurofeedback emerged as a promising method, given its superior spatial resolution and ability to gauge deep cortical and subcortical brain regions. In combination with improved computational approaches, such as pattern recognition analysis (e.g., Support Vector Machines, SVM), fMRI neurofeedback and brain decoding represent key innovations in the field of neuromodulation and functional plasticity. Expansion in this field and its applications critically depend on the existence of freely available, integrated and user-friendly tools for the neuroimaging research community. Here, we introduce FRIEND, a graphic-oriented user-friendly interface package for fMRI neurofeedback and real-time multivoxel pattern decoding. The package integrates routines for image preprocessing in real-time, ROI-based feedback (single-ROI BOLD level and functional connectivity) and brain decoding-based feedback using SVM. FRIEND delivers an intuitive graphic interface with flexible processing pipelines involving optimized procedures embedding widely validated packages, such as FSL and libSVM. In addition, a user-defined visual neurofeedback module allows users to easily design and run fMRI neurofeedback experiments using ROI-based or multivariate classification approaches. FRIEND is open-source and free for non-commercial use. Processing tutorials and extensive documentation are available.

Nov 16, 2013

Neurofeedback training aimed to improve focused attention and alertness in children with ADHD

Neurofeedback training aimed to improve focused attention and alertness in children with ADHD: a study of relative power of EEG rhythms using custom-made software application.

Clin EEG Neurosci. 2013 Jul;44(3):193-202

Authors: Hillard B, El-Baz AS, Sears L, Tasman A, Sokhadze EM

Abstract. Neurofeedback is a nonpharmacological treatment for attention-deficit hyperactivity disorder (ADHD). We propose that operant conditioning of electroencephalogram (EEG) in neurofeedback training aimed to mitigate inattention and low arousal in ADHD, will be accompanied by changes in EEG bands' relative power. Patients were 18 children diagnosed with ADHD. The neurofeedback protocol ("Focus/Alertness" by Peak Achievement Trainer) has a focused attention and alertness training mode. The neurofeedback protocol provides one for Focus and one for Alertness. This does not allow for collecting information regarding changes in specific EEG bands (delta, theta, alpha, low and high beta, and gamma) power within the 2 to 45 Hz range. Quantitative EEG analysis was completed on each of twelve 25-minute-long sessions using a custom-made MatLab application to determine the relative power of each of the aforementioned EEG bands throughout each session, and from the first session to the last session. Additional statistical analysis determined significant changes in relative power within sessions (from minute 1 to minute 25) and between sessions (from session 1 to session 12). Analysis was of relative power of theta, alpha, low and high beta, theta/alpha, theta/beta, and theta/low beta and theta/high beta ratios. Additional secondary measures of patients' post-neurofeedback outcomes were assessed, using an audiovisual selective attention test (IVA + Plus) and behavioral evaluation scores from the Aberrant Behavior Checklist. Analysis of data computed in the MatLab application, determined that theta/low beta and theta/alpha ratios decreased significantly from session 1 to session 12, and from minute 1 to minute 25 within sessions. The findings regarding EEG changes resulting from brain wave self-regulation training, along with behavioral evaluations, will help elucidate neural mechanisms of neurofeedback aimed to improve focused attention and alertness in ADHD.

Aug 07, 2013

What Color is My Arm? Changes in Skin Color of an Embodied Virtual Arm Modulates Pain Threshold

What Color is My Arm? Changes in Skin Color of an Embodied Virtual Arm Modulates Pain Threshold.

Front Hum Neurosci. 2013;7:438

Authors: Martini M, Perez-Marcos D, Sanchez-Vives MV

It has been demonstrated that visual inputs can modulate pain. However, the influence of skin color on pain perception is unknown. Red skin is associated to inflamed, hot and more sensitive skin, while blue is associated to cyanotic, cold skin. We aimed to test whether the color of the skin would alter the heat pain threshold. To this end, we used an immersive virtual environment where we induced embodiment of a virtual arm that was co-located with the real one and seen from a first-person perspective. Virtual reality allowed us to dynamically modify the color of the skin of the virtual arm. In order to test pain threshold, increasing ramps of heat stimulation applied on the participants' arm were delivered concomitantly with the gradual intensification of different colors on the embodied avatar's arm. We found that a reddened arm significantly decreased the pain threshold compared with normal and bluish skin. This effect was specific when red was seen on the arm, while seeing red in a spot outside the arm did not decrease pain threshold. These results demonstrate an influence of skin color on pain perception. This top-down modulation of pain through visual input suggests a potential use of embodied virtual bodies for pain therapy.

Full text open access

International Conference on Physiological Computing Systems

7-9 January 2014, Lisbon, Portugal

http://www.phycs.org/

Physiological data in its different dimensions, either bioelectrical, biomechanical, biochemical or biophysical, and collected through specialized biomedical devices, video and image capture or other sources, is opening new boundaries in the field of human-computer interaction into what can be defined as Physiological Computing. PhyCS is the annual meeting of the physiological interaction and computing community, and serves as the main international forum for engineers, computer scientists and health professionals, interested in outstanding research and development that bridges the gap between physiological data handling and human-computer interaction.


Regular Paper Submission Extension: September 15, 2013
Regular Paper Authors Notification: October 23, 2013
Regular Paper Camera Ready and Registration: November 5, 2013

Jul 23, 2013

SENSUS Transcutaneous Pain Management System Approved for Use During Sleep

Via Medgadget

NeuroMetrix of out of Waltham, MA received FDA clearance for its SENSUS Pain Management System to be used by patients during sleep. This is the first transcutaneous electrical nerve stimulation system to receive a sleep indication from the FDA for pain control.

The device is designed for use by diabetics and others with chronic pain in the legs and feet. It’s worn around one or both legs and delivers an electrical current to disrupt pain signals being sent up to the brain.

neurometrix sensus SENSUS Transcutaneous Pain Management System Approved for Use During Sleep

May 26, 2013

Cross-Brain Neurofeedback: Scientific Concept and Experimental Platform

Cross-Brain Neurofeedback: Scientific Concept and Experimental Platform.

PLoS One. 2013;8(5):e64590

Authors: Duan L, Liu WJ, Dai RN, Li R, Lu CM, Huang YX, Zhu CZ

Abstract. The present study described a new type of multi-person neurofeedback with the neural synchronization between two participants as the direct regulating target, termed as "cross-brain neurofeedback." As a first step to implement this concept, an experimental platform was built on the basis of functional near-infrared spectroscopy, and was validated with a two-person neurofeedback experiment. This novel concept as well as the experimental platform established a framework for investigation of the relationship between multiple participants' cross-brain neural synchronization and their social behaviors, which could provide new insight into the neural substrate of human social interactions.

Using Music as a Signal for Biofeedback

Using Music as a Signal for Biofeedback.

Int J Psychophysiol. 2013 Apr 23;

Authors: Bergstrom I, Seinfeld S, Arroyo-Palacios J, Slater M, Sanchez-Vives MV

Abstract. Studies on the potential benefits of conveying biofeedback stimulus using a musical signal have appeared in recent years with the intent of harnessing the strong effects that music listening may have on subjects. While results are encouraging, the fundamental question has yet to be addressed, of how combined music and biofeedback compares to the already established use of either of these elements separately. This experiment, involving young adults (N=24), compared the effectiveness at modulating participants' states of physiological arousal of each of the following conditions: A) listening to pre-recorded music, B) sonification biofeedback of the heart rate, and C) an algorithmically modulated musical feedback signal conveying the subject's heart rate. Our hypothesis was that each of the conditions (A), (B) and (C) would differ from the other two in the extent to which it enables participants to increase and decrease their state of physiological arousal, with (C) being more effective than (B), and both more than (A). Several physiological measures and qualitative responses were recorded and analyzed. Results show that using musical biofeedback allowed participants to modulate their state of physiological arousal at least equally well as sonification biofeedback, and much better than just listening to music, as reflected in their heart rate measurements, controlling for respiration-rate. Our findings indicate that the known effects of music in modulating arousal can therefore be beneficially harnessed when designing a biofeedback protocol.

Application of alpha/theta neurofeedback and heart rate variability training to young contemporary dancers: State anxiety and creativity.

Application of alpha/theta neurofeedback and heart rate variability training to young contemporary dancers: State anxiety and creativity.

Int J Psychophysiol. 2013 May 15;

Authors: Gruzelier JH, Thompson T, Redding E, Brandt R, Steffert T

Abstract. As one in a series on the impact of EEG-neurofeedback in the performing arts, we set out to replicate a previous dance study in which alpha/theta (A/T) neurofeedback and heart rate variability (HRV) biofeedback enhanced performance in competitive ballroom dancers compared with controls. First year contemporary dance conservatoire students were randomised to the same two psychophysiological interventions or a choreology instruction comparison group or a no-training control group. While there was demonstrable neurofeedback learning, there was no impact of the three interventions on dance performance as assessed by four experts. However, HRV training reduced anxiety and the reduction correlated with improved technique and artistry in performance; the anxiety scale items focussed on autonomic functions, especially cardiovascular activity. In line with the putative impact of hypnogogic training on creativity A/T training increased cognitive creativity with the test of unusual uses, but not insight problems. Methodological and theoretical implications are considered.

Apr 20, 2012

Neurofeedback using real-time near-infrared spectroscopy enhances motor imagery related cortical activation

Neurofeedback using real-time near-infrared spectroscopy enhances motor imagery related cortical activation. 

PLoS One. 2012;7(3):e32234 

Authors: Mihara M, Miyai I, Hattori N, Hatakenaka M, Yagura H, Kawano T, Okibayashi M, Danjo N, Ishikawa A, Inoue Y, Kubota K 

Abstract. Accumulating evidence indicates that motor imagery and motor execution share common neural networks. Accordingly, mental practices in the form of motor imagery have been implemented in rehabilitation regimes of stroke patients with favorable results. Because direct monitoring of motor imagery is difficult, feedback of cortical activities related to motor imagery (neurofeedback) could help to enhance efficacy of mental practice with motor imagery. To determine the feasibility and efficacy of a real-time neurofeedback system mediated by near-infrared spectroscopy (NIRS), two separate experiments were performed. Experiment 1 was used in five subjects to evaluate whether real-time cortical oxygenated hemoglobin signal feedback during a motor execution task correlated with reference hemoglobin signals computed off-line. Results demonstrated that the NIRS-mediated neurofeedback system reliably detected oxygenated hemoglobin signal changes in real-time. In Experiment 2, 21 subjects performed motor imagery of finger movements with feedback from relevant cortical signals and irrelevant sham signals. Real neurofeedback induced significantly greater activation of the contralateral premotor cortex and greater self-assessment scores for kinesthetic motor imagery compared with sham feedback. These findings suggested the feasibility and potential effectiveness of a NIRS-mediated real-time neurofeedback system on performance of kinesthetic motor imagery. However, these results warrant further clinical trials to determine whether this system could enhance the effects of mental practice in stroke patients.

Mar 31, 2012

Neurofeedback for insomnia: a pilot study of Z-score SMR and individualized protocols

Neurofeedback for insomnia: a pilot study of Z-score SMR and individualized protocols.

Appl Psychophysiol Biofeedback. 2011 Dec;36(4):251-64

Authors: Hammer BU, Colbert AP, Brown KA, Ilioi EC

Abstract. Insomnia is an epidemic in the US. Neurofeedback (NFB) is a little used, psychophysiological treatment with demonstrated usefulness for treating insomnia. Our objective was to assess whether two distinct Z-Score NFB protocols, a modified sensorimotor (SMR) protocol and a sequential, quantitative EEG (sQEEG)-guided, individually designed (IND) protocol, would alleviate sleep and associated daytime dysfunctions of participants with insomnia. Both protocols used instantaneous Z scores to determine reward condition administered when awake. Twelve adults with insomnia, free of other mental and uncontrolled physical illnesses, were randomly assigned to the SMR or IND group. Eight completed this randomized, parallel group, single-blind study. Both groups received fifteen 20-min sessions of Z-Score NFB. Pre-post assessments included sQEEG, mental health, quality of life, and insomnia status. ANOVA yielded significant post-treatment improvement for the combined group on all primary insomnia scores: Insomnia Severity Index (ISI p<.005), Pittsburgh Sleep Quality Inventory (PSQI p<.0001), PSQI Sleep Efficiency (p<.007), and Quality of Life Inventory (p<.02). Binomial tests of baseline EEGs indicated a significant proportion of excessively high levels of Delta and Beta power (p<.001) which were lowered post-treatment (paired z-tests p<.001). Baseline EEGs showed excessive sleepiness and hyperarousal, which improved post-treatment. Both Z-Score NFB groups improved in sleep and daytime functioning. Post-treatment, all participants were normal sleepers. Because there were no significant differences in the findings between the two groups, our future large scale studies will utilize the less burdensome to administer Z-Score SMR protocol.

Stress, uncertainty and decision confidence

Stress, uncertainty and decision confidence.

Appl Psychophysiol Biofeedback. 2011 Dec;36(4):273-9

Authors: Heereman J, Walla P

Abstract. We successfully manipulated decision confidence in a probabilistic prediction task by means of stress as induced by excessive cognitive demands. In particular, our results indicate that decisions (based on high and low, but not intermediate levels of uncertainty) made under stress (confirmed by skin conductance measures) are associated with increased confidence when outcome probabilities are incompletely known (20% residual uncertainty). A different pattern was found when outcome probabilities were completely known (0% residual uncertainty). Here, stress led to decreased decision confidence when decisions were associated with intermediate levels of uncertainty but had no effect in case of high and low levels of uncertainty. In addition we provide evidence for ambiguity--(understood as implicit-risk) assessment being impaired under stress conditions.

Aug 26, 2010

Heart Chamber Orchestra

The Heart Chamber Orchestra consists of classical musicians who use their heartbeats to control a computer composition and visualization environment. To my best knowledge, this is the first example of "group biofeedback".

The musicians are equipped with ECG (electrocardiogram) sensors. A computer monitors and analyzes the state of these 12 hearts in real time. The acquired information is used to compose a musical score with the aid of computer software. It is a living score dependent on the state of the hearts.

hcoquadrooo.jpg

0aalesfelchesiii.jpg


While the musicians are playing, their heartbeats influence and change the composition and vice versa. The musicians and the electronic composition are linked via the hearts in a circular motion, a feedback structure. The emerging music evolves entirely during the performance.

The resulting music is the expression of this process and of an organism forming itself from the circular interplay of the individual musicians and the machine.

The sensor network consists of 12 individual sensors; each one is fitted onto the body of a musician. A computer receives the heartbeat data. Software analyzes the data and generates via different algorithms the real-time musical score for the musicians, the electronic sounds and the computer graphic visualization

Below is a video documentation from the Heart Chamber Orchestra performance on the 28th of March 2010 at Kiasma Theatre at Pixelache Festival in Helsinki, Finland.

 

1 2 3 4 5 Next