Sep 30, 2006
Utilizing Gamma Band to Improve Mental Task Based Brain-Computer Interface Design
Utilizing Gamma Band to Improve Mental Task Based Brain-Computer Interface Design
IEEE Transactions on Neural Systems and Rehabilitation Engineering, Volume 14, Issue 3, Sept. 2006 Page(s): 299 - 303
Palaniappan, R.
A common method for designing brain–computer Interface (BCI) is to use electroencephalogram (EEG) signals extracted during mental tasks. In these BCI designs, features from EEG such as power and asymmetry ratios from delta, theta, alpha, and beta bands have been used in classifying different mental tasks. In this paper, the performance of the mental task based BCI design is improved by using spectral power and asymmetry ratios from gamma (24–37 Hz) band in addition to the lower frequency bands. In the experimental study, EEG signals extracted during five mental tasks from four subjects were used. Elman neural network (ENN) trained by the resilient backpropagation algorithm was used to classify the power and asymmetry ratios from EEG into different combinations of two mental tasks. The results indicated that 1) the classification performance and training time of the BCI design were improved through the use of additional gamma band features; 2) classification performances were nearly invariant to the number of ENN hidden units or feature extraction method.
19:24 Posted in Neurotechnology & neuroinformatics | Permalink | Comments (0) | Tags: brain-computer interface
The comments are closed.