By continuing your visit to this site, you accept the use of cookies. These ensure the smooth running of our services. Learn more.

Sep 30, 2006

Brain-computer interfaces for control of neuroprostheses

Brain-computer interfaces for control of neuroprostheses: from synchronous to asynchronous mode of operation.

Biomed Tech (Berl). 2006;51(2):57-63

Authors: Müller-Putz GR, Scherer R, Pfurtscheller G, Rupp R

Transferring a brain-computer interface (BCI) from the laboratory environment into real world applications is directly related to the problem of identifying user intentions from brain signals without any additional information in real time. From the perspective of signal processing, the BCI has to have an uncued or asynchronous design. Based on the results of two clinical applications, where 'thought' control of neuroprostheses based on movement imagery in tetraplegic patients with a high spinal cord injury has been established, the general steps from a synchronous or cue-guided BCI to an internally driven asynchronous brain-switch are discussed. The future potential of BCI methods for various control purposes, especially for functional rehabilitation of tetraplegics using neuroprosthetics, is outlined.

The comments are closed.