Nov 06, 2006
Dopamine used to prompt nerve tissue to regrow
Via Medgadget
Georgia Tech/Emory researchers are testing how to use dopamine to design polymer that could help damaged nerves reconnect. Their discovery might lead to the development of new therapies for a range of central and peripheral nervous system disorders:
The discovery is the first step toward the eventual goal of implanting the new polymer into patients suffering from neurological disorders, such as Alzheimer's, Parkinson's or epilepsy, to help repair damaged nerves. The findings were published online the week of Oct. 30 in the Proceedings of the National Academy of Sciences (PNAS).
"We showed that you could use a neurotransmitter as a building block of a polymer," said Wang. "Once integrated into the polymer, the transmitter can still elicit a specific response from nerve tissues."
The "designer" polymer was recognized by the neurons when used on a small piece of nerve tissue and stimulated extensive neural growth. The implanted polymer didn't cause any tissue scarring or nerve degeneration, allowing the nerve to grow in a hostile environment post injury.
When ready for clinical use, the polymer would be implanted at the damaged site to promote nerve regeneration. As the nerve tissue reforms, the polymer degrades.
Wang's team found that dopamine's structure, which contains two hydroxyl groups, is vital for the material's neuroactivity. Removing even one group caused a complete loss of the biological activity. They also determined that dopamine was more effective at differentiating nerve cells than the two most popular materials for culturing nerves -- polylysine and laminin. This ability means that the material with dopamine may have a better chance to successfully repair damaged nerves.
The success of dopamine has encouraged the team to set its sights on other neurotransmitters.
"Dopamine was a good starting point, but we are looking into other neurotransmitters as well," Wang said.
The team's next step is to verify findings that the material stimulates the reformation of synapses in addition to regrowth.
23:14 Posted in Neurotechnology & neuroinformatics | Permalink | Comments (0) | Tags: neurotechnology
The comments are closed.