Ok

By continuing your visit to this site, you accept the use of cookies. These ensure the smooth running of our services. Learn more.

Jan 28, 2006

Researchers Pinpoint Brain Areas That Process Reality, Illusion

Via Washington University in St Luis

A study by Daniel Moran and coll. has focused on studying perception and playing visual tricks on macaque monkeys and some human subjects. These scholars have created a virtual reality video game to trick the monkeys into thinking that they were tracing ellipses with their hands, though they actually were moving their hands in a circle.

Then researchers monitored nerve cells in the monkeys enabling them to see what areas of the brain represented the circle and which areas represented the ellipse. They found that the primary motor cortex represented the actual movement while the signals from cells in a neighboring area, called the ventral premotor cortex, were generating elliptical shapes. The research shows how the mind creates its sense of order in the world and then adjusts on the fly to eliminate distortions.

For instance, the first time you don a new pair of bifocals, there is a difference in what you perceive visually and what your hand does when you go to reach for something. With time, though, the brain adjusts so that vision and action become one. The ventral premotor complex plays a major role in that process. Knowing how the brain works to distinguish between action and perception will enhance efforts to build biomedical devices that can control artificial limbs, some day enabling the disabled to move a prosthetic arm or leg by thinking about it.

Results were published in the Jan. 16, 2004 issue of Science.


 

The comments are closed.