Ok

By continuing your visit to this site, you accept the use of cookies. These ensure the smooth running of our services. Learn more.

Aug 07, 2013

Welcome to wonderland: the influence of the size and shape of a virtual hand on the perceived size and shape of virtual objects

Welcome to wonderland: the influence of the size and shape of a virtual hand on the perceived size and shape of virtual objects.

PLoS One. 2013;8(7):e68594

Authors: Linkenauger SA, Leyrer M, Bülthoff HH, Mohler BJ

The notion of body-based scaling suggests that our body and its action capabilities are used to scale the spatial layout of the environment. Here we present four studies supporting this perspective by showing that the hand acts as a metric which individuals use to scale the apparent sizes of objects in the environment. However to test this, one must be able to manipulate the size and/or dimensions of the perceiver's hand which is difficult in the real world due to impliability of hand dimensions. To overcome this limitation, we used virtual reality to manipulate dimensions of participants' fully-tracked, virtual hands to investigate its influence on the perceived size and shape of virtual objects. In a series of experiments, using several measures, we show that individuals' estimations of the sizes of virtual objects differ depending on the size of their virtual hand in the direction consistent with the body-based scaling hypothesis. Additionally, we found that these effects were specific to participants' virtual hands rather than another avatar's hands or a salient familiar-sized object. While these studies provide support for a body-based approach to the scaling of the spatial layout, they also demonstrate the influence of virtual bodies on perception of virtual environments.

Using avatars to model weight loss behaviors: participant attitudes and technology development.

Using avatars to model weight loss behaviors: participant attitudes and technology development.

J Diabetes Sci Technol. 2013;7(4):1057-65

Authors: Napolitano MA, Hayes S, Russo G, Muresu D, Giordano A, Foster GD

BACKGROUND: Virtual reality and other avatar-based technologies are potential methods for demonstrating and modeling weight loss behaviors. This study examined avatar-based technology as a tool for modeling weight loss behaviors. METHODS: This study consisted of two phases: (1) an online survey to obtain feedback about using avatars for modeling weight loss behaviors and (2) technology development and usability testing to create an avatar-based technology program for modeling weight loss behaviors. RESULTS: Results of phase 1 (n = 128) revealed that interest was high, with 88.3% stating that they would participate in a program that used an avatar to help practice weight loss skills in a virtual environment. In phase 2, avatars and modules to model weight loss skills were developed. Eight women were recruited to participate in a 4-week usability test, with 100% reporting they would recommend the program and that it influenced their diet/exercise behavior. Most women (87.5%) indicated that the virtual models were helpful. After 4 weeks, average weight loss was 1.6 kg (standard deviation = 1.7). CONCLUSIONS: This investigation revealed a high level of interest in an avatar-based program, with formative work indicating promise. Given the high costs associated with in vivo exposure and practice, this study demonstrates the potential use of avatar-based technology as a tool for modeling weight loss behaviors.Abstract

What Color is My Arm? Changes in Skin Color of an Embodied Virtual Arm Modulates Pain Threshold

What Color is My Arm? Changes in Skin Color of an Embodied Virtual Arm Modulates Pain Threshold.

Front Hum Neurosci. 2013;7:438

Authors: Martini M, Perez-Marcos D, Sanchez-Vives MV

It has been demonstrated that visual inputs can modulate pain. However, the influence of skin color on pain perception is unknown. Red skin is associated to inflamed, hot and more sensitive skin, while blue is associated to cyanotic, cold skin. We aimed to test whether the color of the skin would alter the heat pain threshold. To this end, we used an immersive virtual environment where we induced embodiment of a virtual arm that was co-located with the real one and seen from a first-person perspective. Virtual reality allowed us to dynamically modify the color of the skin of the virtual arm. In order to test pain threshold, increasing ramps of heat stimulation applied on the participants' arm were delivered concomitantly with the gradual intensification of different colors on the embodied avatar's arm. We found that a reddened arm significantly decreased the pain threshold compared with normal and bluish skin. This effect was specific when red was seen on the arm, while seeing red in a spot outside the arm did not decrease pain threshold. These results demonstrate an influence of skin color on pain perception. This top-down modulation of pain through visual input suggests a potential use of embodied virtual bodies for pain therapy.

Full text open access

The Computer Game That Helps Therapists Chat to Adolescents With Mental Health Problems

Via MIT Technology Review

Adolescents with mental health problems are particularly hard for therapists to engage. But a new computer game is providing a healthy conduit for effective communication between them.

Read the full story on MIT Technology Review

Jul 23, 2013

Illusory ownership of a virtual child body causes overestimation of object sizes and implicit attitude changes

Illusory ownership of a virtual child body causes overestimation of object sizes and implicit attitude changes.

Proc Natl Acad Sci USA. 2013 Jul 15;

Authors: Banakou D, Groten R, Slater M

Abstract. An illusory sensation of ownership over a surrogate limb or whole body can be induced through specific forms of multisensory stimulation, such as synchronous visuotactile tapping on the hidden real and visible rubber hand in the rubber hand illusion. Such methods have been used to induce ownership over a manikin and a virtual body that substitute the real body, as seen from first-person perspective, through a head-mounted display. However, the perceptual and behavioral consequences of such transformed body ownership have hardly been explored. In Exp. 1, immersive virtual reality was used to embody 30 adults as a 4-y-old child (condition C), and as an adult body scaled to the same height as the child (condition A), experienced from the first-person perspective, and with virtual and real body movements synchronized. The result was a strong body-ownership illusion equally for C and A. Moreover there was an overestimation of the sizes of objects compared with a nonembodied baseline, which was significantly greater for C compared with A. An implicit association test showed that C resulted in significantly faster reaction times for the classification of self with child-like compared with adult-like attributes. Exp. 2 with an additional 16 participants extinguished the ownership illusion by using visuomotor asynchrony, with all else equal. The size-estimation and implicit association test differences between C and A were also extinguished. We conclude that there are perceptual and probably behavioral correlates of body-ownership illusions that occur as a function of the type of body in which embodiment occurs.

Mar 11, 2013

Is virtual reality always an effective stressors for exposure treatments? Some insights from a controlled trial

Is virtual reality always an effective stressors for exposure treatments? Some insights from a controlled trial.

BMC psychiatry, 13(1) p. 52, 2013

Federica Pallavicini, Pietro Cipresso, Simona Raspelli, Alessandra Grassi, Silvia Serino, Cinzia Vigna, Stefano Triberti, Marco Villamira, Andrea Gaggioli, Giuseppe Riva

Abstract. Several research studies investigating the effectiveness of the different treatments have demonstrated that exposure-based therapies are more suitable and effective than others for the treatment of anxiety disorders. Traditionally, exposure may be achieved in two manners: in vivo, with direct contact to the stimulus, or by imagery, in the person’s imagination. However, despite its effectiveness, both types of exposure present some limitations that supported the use of Virtual Reality (VR). But is VR always an effective stressor? Are the technological breakdowns that may appear during such an experience a possible risk for its effectiveness? (...)

Full paper available here (open access)

Sep 03, 2012

Therapy in Virtual Environments - Clinical and Ethical Issues

Telemed J E Health. 2012 Jul 23;

Authors: Yellowlees PM, Holloway KM, Parish MB

Abstract. Background: As virtual reality and computer-assisted therapy strategies are increasingly implemented for the treatment of psychological disorders, ethical standards and guidelines must be considered. This study determined a set of ethical and legal guidelines for treatment of post-traumatic stress disorder (PTSD)/traumatic brain injury (TBI) in a virtual environment incorporating the rights of an individual who is represented by an avatar. Materials and Methods: A comprehensive literature review was undertaken. An example of a case study of therapy in Second Life (a popular online virtual world developed by Linden Labs) was described. Results: Ethical and legal considerations regarding psychiatric treatment of PTSD/TBI in a virtual environment were examined. The following issues were described and discussed: authentication of providers and patients, informed consent, patient confidentiality, patient well-being, clinician competence (licensing and credentialing), training of providers, insurance for providers, the therapeutic environment, and emergencies. Ethical and legal guidelines relevant to these issues in a virtual environment were proposed. Conclusions: Ethical and legal issues in virtual environments are similar to those that occur in the in-person world. Individuals represented by an avatar have the rights equivalent to the individual and should be treated as such.

Aug 04, 2012

Extending body space in immersive virtual reality: a very long arm illusion

PLoS One. 2012;7(7):e40867

Authors: Kilteni K, Normand JM, Sanchez-Vives MV, Slater M

Abstract. Recent studies have shown that a fake body part can be incorporated into human body representation through synchronous multisensory stimulation on the fake and corresponding real body part - the most famous example being the Rubber Hand Illusion. However, the extent to which gross asymmetries in the fake body can be assimilated remains unknown. Participants experienced, through a head-tracked stereo head-mounted display a virtual body coincident with their real body. There were 5 conditions in a between-groups experiment, with 10 participants per condition. In all conditions there was visuo-motor congruence between the real and virtual dominant arm. In an Incongruent condition (I), where the virtual arm length was equal to the real length, there was visuo-tactile incongruence. In four Congruent conditions there was visuo-tactile congruence, but the virtual arm lengths were either equal to (C1), double (C2), triple (C3) or quadruple (C4) the real ones. Questionnaire scores and defensive withdrawal movements in response to a threat showed that the overall level of ownership was high in both C1 and I, and there was no significant difference between these conditions. Additionally, participants experienced ownership over the virtual arm up to three times the length of the real one, and less strongly at four times the length. The illusion did decline, however, with the length of the virtual arm. In the C2-C4 conditions although a measure of proprioceptive drift positively correlated with virtual arm length, there was no correlation between the drift and ownership of the virtual arm, suggesting different underlying mechanisms between ownership and drift. Overall, these findings extend and enrich previous results that multisensory and sensorimotor information can reconstruct our perception of the body shape, size and symmetry even when this is not consistent with normal body proportions.

New HMD "Oculus RIFT" launched on Kickstarter

The Oculus Rift, a new HMD which promises to take 3D gaming to the next level, was launched on Kickstarter last week. The funding goal is $250,000.

“With an incredibly wide field of view, high resolution display, and ultra-low latency head tracking, the Rift provides a truly immersive experience that allows you to step inside your favorite game and explore new worlds like never before."

Technical specs of the Dev Kit (subject to change)

 Head tracking: 6 degrees of freedom (DOF) ultra low latency
Field of view: 110 degrees diagonal / 90 degrees horizontal
Resolution: 1280×800 (640×800 per eye)
Inputs: DVI/HDMI and USB
Platforms: PC and mobile
Weight: ~0.22 kilograms

The developer kits acquired through Kickstarter will include access to the Oculus Developer Center, a community for Oculus developers. The Oculus Rift SDK will include code, samples, and documentation to facilitate integration with any new or existing games, initially on PCs and mobiles, with consoles to follow.

Oculus says it will be showcasing the Rift at a number of upcoming tradeshows, including Quakecon, Siggraph, GDC Europe, gamescom and Unite.

Apr 20, 2012

Enhancement of motor imagery-related cortical activation during first-person observation measured by functional near-infrared spectroscopy

Enhancement of motor imagery-related cortical activation during first-person observation measured by functional near-infrared spectroscopy. 

Eur J Neurosci. 2012 Apr 18;

Authors: Kobashi N, Holper L, Scholkmann F, Kiper D, Eng K 

Abstract. It is known that activity in secondary motor areas during observation of human limbs performing actions is affected by the observer's viewpoint, with first-person views generally leading to stronger activation. However, previous neuroimaging studies have displayed limbs in front of the observer, providing an offset view of the limbs without a truly first-person viewpoint. It is unknown to what extent these pseudo-first-person viewpoints have affected the results published to date. In this experiment, we used a horizontal two-dimensional mirrored display that places virtual limbs at the correct egocentric position relative to the observer. We compared subjects using the mirrored and conventional displays while recording over the premotor cortex with functional near-infrared spectroscopy. Subjects watched a first-person view of virtual arms grasping incoming balls on-screen; they were instructed to either imagine the virtual arm as their own [motor imagery during observation (MIO)] or to execute the movements [motor execution (ME)]. With repeated-measures anova, the hemoglobin difference as a direct index of cortical oxygenation revealed significant main effects of the factors hemisphere (P = 0.005) and condition (P ≤ 0.001) with significant post hoc differences between MIO-mirror and MIO-conventional (P = 0.024). These results suggest that the horizontal mirrored display provides a more accurate first-person view, enhancing subjects' ability to perform motor imagery during observation. Our results may have implications for future experimental designs involving motor imagery, and may also have applications in video gaming and virtual reality therapy, such as for patients following stroke.

Mar 31, 2012

Microsoft patents projector eyewear for Xbox and beyond

Via KurzweilAI

[+]mshmspatent

Illustrations from Microsoft's patent show the rough schematics for both a helmet-based display and one embedded in a pair of glasses (credit: Microsoft)

According to Patent Bolt, Microsoft has been secretly working on a video headset since September 2010.

A New Microsoft patent reveals that they’ve been working two styles of headset: an aviation styled helmet aimed at Xbox gamers, and one that resembles a pair of sunglasses for use with smartphones, MP3 players and other future devices.

In the patent, Microsoft states that a compact display system may be coupled into goggles, a helmet, or other eyewear. These configurations enable the wearer to view images from a computer, media player, or other electronic device with privacy and mobility. When adapted to display two different images concurrently — one for each eye — the system may be used for stereoscopic display (e.g., virtual-reality) applications.

Jul 22, 2011

Mirroring avatars: dissociation of action and intention in human motor resonance

Paola Borroni, Alessandra Gorini, Giuseppe Riva, Stephane Bouchard and Gabriella Cerri

The European journal of neuroscience (19 July 2011)
 
Abstract. Observation of others’ actions induces a subliminal activation of motor pathways (motor resonance) that is mediated by the mirror neuron system and reflects the motor program encoding the observed action. Whether motor resonance represents the movements composing an action or also its motor intention remains of debate, as natural actions implicitly contain their motor intentions. Here, action and intention are dissociated using a natural and an impossible action with the same grasping intention: subjects observe an avatar grasping a ball using either a natural hand action (‘palmar’ finger flexion) or an impossible hand action (‘dorsal’ finger flexion). Motor-evoked potentials (MEPs), elicited by single transcranial magnetic stimulation of the hand area in the primary motor cortex, were used to measure the excitability modulation of motor pathways during observation of the two different hand actions. MEPs were recorded from the opponens pollicis (OP), abductor digiti minimi (ADM) and extensor carpi radialis (ECR) muscles. A significant MEP facilitation was found in the OP, during observation of the grasping phase of the natural action; MEPs in the ADM were facilitated during observation of the hand opening phase of the natural action and of both opening and grasping phases of the impossible action. MEPs in the ECR were not affected. As different resonant responses are elicited by the observation of the two different actions, despite their identical intention, we conclude that the mirror neuron system cannot utilize the observer’s subliminal motor program in the primary motor cortex to encode action intentions.

Jun 05, 2011

Human Computer Confluence

Human Computer Confluence (HC-CO) is an ambitious initiative recently launched by the European Commission under the Future and Emerging Technologies (FET) program, which fosters projects that investigate and demonstrate new possibilities “emerging at the confluence between the human and technological realms” (source: HC-CO website, EU Commission).

Such projects will examine new modalities for individual and group perception, actions and experience in augmented, virtual spaces. In particular, such virtual spaces would span the virtual reality continuum, also extending to purely synthetic but believable representation of massive, complex and dynamic data. HC-CO also fosters inter-disciplinary research (such as Presence, neuroscience, psychophysics, prosthetics, machine learning, computer science and engineering) towards delivering unified experiences and inventing radically new forms of perception/action.

HC-CO brings together ideas stemming from two series of Presence projects (the complete list is available here) with a vision of new forms of interaction and of new types of information spaces to interact with. It will develop the science and technologies necessary to ensure an effective, even transparent, bidirectional communication between humans and computers, which will in turn deliver a huge set of applications: from today's Presence concepts to new senses, to new perceptive capabilities dealing with more abstract information spaces to the social impact of such communication enabling technologies. Inevitably, these technologies question the notion of interface between the human and the technological realm, and thus, also in a fundamental way, put into question the nature of both.

The long-term implications can be profound and need to be considered from an ethical/societal point of view. HC-CO is, however, not a programme on human augmentation. It does not aim to create a super-human. The idea of confluence is to study what can be done by bringing new types of technologically enabled interaction modalities in between the human and a range of virtual (not necessarily naturalistic) realms. Its ambition is to bring our best understanding from human sciences into future and emerging technologies for a new and purposeful human computer symbiosis.

HC-CO is conceptually broken down into the following themes:

  • HC-CO Data. On-line perception and interaction with massive volumes of data: new methods to stimulate and use human sensory perception and cognition to interpret massive volumes of data in real time to enable assimilation, understanding and interaction with informational spaces. Research should find new ways to exploit human factors (sensory, perceptual and cognitive aspects), including the selection of the most effective sensory modalities, for data exploration. Although not explicitly mentioned, non-sensorial pathways, i.e., direct brain to computer and computer to brain communication could be explored.
  • HC-CO Transit. Unified experience, emerging from the unnoticeable transition from physical to augmented or virtual reality: new methods and concepts towards unobtrusive mixed or virtual reality environment (multi-modal displays, tracking systems, virtual representations...), and scenarios to support entirely unobtrusive interaction. Unobtrusiveness also applies to virtual representations, their dynamics, and the feedback received. Here the challenge is both technological and scientific, spanning human cognition, human machine interaction and machine intelligence disciplines.
  • HC-CO Sense. New forms of perception and action: invent and demonstrate new forms of interaction with the real world, virtual models or abstract information by provoking a mapping from an artificial medium to appropriate sensory modalities or brain regions. This research should reinforce data perception and unified experience by augmenting the human interaction capabilities and awareness in virtual spaces.

In sum, HC-CO is an emerging r&d field that holds the potential to revolutionize the way we interact with computers. Standing at the crossroad between cognitive science, computer science and artificial intelligence, HC-CO can provide the cyberpsychology and cybertherapy community with fresh concepts and interesting new tools to apply in both research and clinical domains.

More to explore:

  • HC-CO initiative: The official EU website the HC-CO initiative, which describes the broad objectives of this emerging research field. 
  • HC2 Project: The horizontal character of HC-CO makes it a fascinating and fertile interdisciplinary field, but it can also compromise its growth, with researchers scattered across disciplines and groups worldwide. For this reason a coordination activity promoting discipline connect, identity building and integration while defining future research, education and policy directions at the regional, national, European and international level has been created. This project is HC2, a three-year Coordination Action funded by the FP7 FET Proactive scheme. The consortium will draw on a wide network of researchers and stakeholders to achieve four key objectives: a) stimulate, structure and support the research community, promoting identity building; b) to consolidate research agendas with special attention to the interdisciplinary aspects of HC-CO; c) enhance the Public Understanding of HC-CO and foster the early contact of researchers with high-tech SMEs and other industry players; d) establish guidelines for the definition of new educational curricula to prepare the next generation of HC-CO researchers.
  • CEED Project: Funded by the HC-CO initiative, the Collective Experience of Empathic Data Systems (CEEDs) project aims to develop “novel, integrated technologies to support human experience, analysis and understanding of very large datasets”. CEEDS will develop innovative tools to exploit theories showing that discovery is the identification of patterns in complex data sets by the implicit information processing capabilities of the human brain. Implicit human responses will be identified by the CEEDs system’s analysis of its sensing systems, tuned to users’ bio-signals and non-verbal behaviours. By associating these implicit responses with different features of massive datasets, the CEEDs system will guide users’ discovery of patterns and meaning within the datasets.
  • VERE Project: VERE - Virtual Embodiment and Robotic Re-Embodiment – is another large project funded by the HC-CO initiative, which aims at “dissolving the boundary between the human body and surrogate representations in immersive virtual reality and physical reality”. Dissolving the boundary means that people have the illusion that their surrogate representation is their own body, and act and have thoughts that correspond to this. The work in VERE may be thought of as applied presence research and applied cognitive neuroscience.

May 21, 2011

You are not a gadget

Recently, I came across an intriguing book that brings a new, thought-provoking perspective on how the Internet is shaping our lives and culture. The title of the book is You Are Not a Gadget: A Manifesto and the author is Jaron Lanier, a computer scientist and musician who is best known for his pioneering work in the field of virtual reality.

The leitmotiv of the book can be summarized in a single question: are new technologies really playing an empowering role, by increasing people’s creativity, control, and freedom? As can be expected from the title, the author’s answer is more negative than positive. To construct his argument, Lanier starts from the observation that the evolution of computing is not as free of constraints as one might assume.

As a key example, the author describes the evolution of MIDI, a protocol for composing and playing music on computers. This format emerged in the early 1980s and was immediately recognized as an empowering tool for musicians. However, as more and more people adopted it, it became a rigid standard that limited the expressive potential of artists because, as Lanier points out, it ‘‘could only describe the tile mosaic world of the keyboardist, not the watercolor world of the violin.’’ For the author, this lock-in effect can be seen in other fields of information technology. For example, certain features that were included in the early versions of the UNIX operating system are now deeply embedded in the software and cannot be modified, even if they are considered obsolete or inappropriate. Once an approach becomes standard, it tends to inhibit other solutions, thereby limiting the potential for creativity.

Lanier goes on to demystify some of today’s most popular Internet buzzwords, such as ‘‘Web 2.0,’’ ‘‘Open Culture,’’ ‘‘Mash-Ups,’’ and ‘‘Wisdom of Crowds.’’ He maintains that these trendy notions are ultimately pointing to a new form of ‘‘digital collectivism,’’ which rather than encouraging individual inventiveness, promotes mediocrity and homologation. By allowing everyone to offer up their opinion and ideas, the social web is melting into an indistinct pool of information, a vast gray zone where it is increasingly difficult to find quality or meaningful content. This observation leads the author to the counterintuitive conclusion that the introduction of boundaries is sometimes useful (if not even necessary) to achieve originality and excellence.

Another issue raised by Lanier concerns the risk of de-humanization and de-individualization associated with online social networks. He describes the early Web as a space full of ‘‘flavours and colours’’ where each Web site was different from the others and contributed to the diversity of the Internet landscape. But with the advent of Facebook and other similar sites, this richness was lost because people started creating their personal web pages using predefined templates. On the one hand, this formalism has allowed anyone to create, publish, and share content online easily (blog, video, music, etc.). On the other hand, it has reduced the potential for individuals to express their uniqueness.

Lanier reminds us of the importance of putting the human being, and not the machine, at the center of concerns for technology and innovation. For this goal to be achieved, it is not enough to develop usable and accessible tools; it is also necessary to emphasize the uniqueness of experience. This humanist faith leads the author to criticize the idea of technological Singularity, popularized by recognized experts such as Ray Kurzweil, Vernor Vinge, and Kevin Kelly. This concept holds that exponential increase in computing power and communication networks, combined with the rapid advances in the fields of artificial intelligence and robotics, may lead to the emergence of a super-intelligent organism (the ‘‘Singularity’’), which could eventually develop intentional agency and subordinate the human race. Lanier’s opposition to this idea is based on the conviction that the ‘‘human factor’’ will continue to play an essential role in the evolution of technology. The author believes that computers will never be able to replace the uniqueness of humans nor replicate the complexity of their experience. Further, he considers the concept of technological Singularity culturally dangerous because it enforces the idea of an inevitable superiority of machines over humans: ‘‘People degrade themselves in order to make machines seem smart all the time,’’ writes Lanier.

However, Lanier is genuinely admired by the potential of the Internet and new technologies. This iswhy he calls for a new ‘‘technological humanism’’ able to contrast the overarching vision of digital collectivism and empower creative selfexpression. As a key illustration, the author describes the unique combination of idealism, technical skills, and imaginative talent that, in the 1980s, lead a small group of programmers to conceive the vision of virtual reality. This powerful new paradigm in human–computer interaction inspired in the following decades a number of innovative applications in industry, education, and medicine.

Beside the nostalgic remembrances of the heroic times of Silicon Valley and the sophisticated overtone of some terms (e.g., ‘‘numinous neoteny’’), the book written by Lanier conveys a clear message and deserves the attention of all who are interested in the relationship between humans and technology. The idea that technological innovation should be informed by human values and experience is not new, but Lanier brings it out vividly in detail and with a number of persuasive examples.

More to explore

  • Jaron Lanier’s homepage: The official website of Jaron Lanier, which with its old-fashion style recaptures the freshness and simplicity of the early Internet. The website features biographical information about the author and includes links to a number of Lanier’s articles and commentaries on a number of different technology-related topics. 
  • Kurzweil Accelerating Intelligence: Launched in 2001, Kurzweil Accelerating Intelligence explores the forecasts and insights on accelerating change described in Ray Kurzweil’s books, with updates about breakthroughs in science and technology.
  • Singularity University: Singularity University is an interdisciplinary university founded by Ray Kurzweil and other renowned experts in technology with the support of a number of sponsors (including Google), whose mission is “to stimulate groundbreaking, disruptive thinking and solutions aimed at solving some of the planet’s most pressing challenges”. Singularity University is based at the NASA Ames campus in Silicon Valley.
  • Humanity+: Humanity+ is a non-profit organization dedicated to “the ethical use of technology to extend human capabilities and transcend the legacy of the human condition”. The mission of the organization is to support discussion and public awareness about emerging technologies, as well as to propose solutions for potential problems related to these technologies. The website includes plenty of resources about transhumanism topics and news about upcoming seminars and conferences.

 

Mar 02, 2011

The Key to Unlocking the Virtual Body: Virtual Reality in the Treatment of Obesity and Eating Disorders

The Key to Unlocking the Virtual Body: Virtual Reality in the Treatment of Obesity and Eating Disorders

Giuseppe Riva, Journal of Diabetes Science and Technology, Volume 5, Issue 2, March 2011

Obesity and eating disorders are usually considered unrelated problems with different causes. However, various studies identify unhealthful weight-control behaviors (fasting, vomiting, or laxative abuse), induced by a negative experience of the body, as the common antecedents of both obesity and eating disorders. But how might negative body image—common to most adolescents, not only to medical patients—be behind the development of obesity and eating disorders? In this paper, I review the “allocentric lock theory” of negative body image as the possible antecedent of both obesity and eating disorders. Evidence from psychology and neuroscience indicates that our bodily experience involves the integration of different sensory inputs within two different reference frames: egocentric (first-person experience) and allocentric (third-person experience). Even though functional relations between these two frames are usually limited, they influence each other during the interaction between long- and short-term memory processes in spatial cognition. If this process is impaired either through exogenous (e.g., stress) or endogenous causes, the egocentric sensory inputs are unable to update the contents of the stored allocentric representation of the body. In other words, these patients are locked in an allocentric (observer view) negative image of their body, which their sensory inputs are no longer able to update even after a demanding diet and a significant weight loss. This article discusses the possible role of virtual reality in addressing this problem within an integrated treatment approach based on the allocentric lock theory.

Jan 17, 2011

The Google Earth Treadmill: A New Way to Explore the World

According to a report on Mashable, Panasonic’s VIERA Connect TVs, in collaboration with NordicTrack, unveiled a television at CES that lets you experience virtual trails straight from your living room.

The HDTV displays Google Maps and communicates inclinations of hills and valleys to the treadmill. The machine is also able to incline itself at the appropriate times, matching those hills every step of the way. Other real-life features include cars and people crossing your path.

Have a good (virtual) walk!

Jan 05, 2011

INTERSTRESS video released

We have just released a new video introducing the INTERSTRESS project, an EU-funded initiative that aims to design, develop and test an advanced ICT-based solution for the assessment and treatment of psychological stress. The specific objectives of the project are:

  • Quantitative and objective assessment of symptoms using biosensors and behavioral analysis
  • Decision support for treatment planning through data fusion and detection algorithms
  • Provision of warnings and motivating feedback to improve compliance and long-term outcomes

Credits: Virtual Reality Medical Institute

Nov 09, 2010

3D holographic technology: the future of telemedicine?

Scientists at the University of Arizona in Tucson have developed a new form of holographic telepresence that projects a three-dimensional, full-color, moving image without viewers needing to use 3-D glasses. While the technology could be used in TV or movies, it also could be used in telemedicine and mapping, as well as in everyday corporate meetings, the report notes. The image is recorded using an array of regular cameras, each one viewing the object from a different angle. Then, using fast-pulsed laser beams, a holographic, or three-dimensional, pixel is created. Such technology could be a “game changer” in some industries, including telemedicine, lead researcher Nasser Peyghambarian said. “Holographic telepresence means we can record a three-dimensional image in one location and show it in another location, in real-time, anywhere in the world,” he added. “Surgeons at different locations around the world can observe in 3-D, in real time, and participate in the surgical procedure.

Full Story

Sep 26, 2010

Change in brain activity through virtual reality-based brain-machine communication in a chronic tetraplegic subject with muscular dystrophy

Change in brain activity through virtual reality-based brain-machine communication in a chronic tetraplegic subject with muscular dystrophy.

BMC Neurosci. 2010 Sep 16;11(1):117

Authors: Hashimoto Y, Ushiba J, Kimura A, Liu M, Tomita Y

ABSTRACT: BACKGROUND: For severely paralyzed people, a brain-computer interface (BCI) provides a way of re-establishing communication. Although subjects with muscular dystrophy (MD) appear to be potential BCI users, the actual long-term effects of BCI use on brain activities in MD subjects have yet to be clarified. To investigate these effects, we followed BCI use by a chronic tetraplegic subject with MD over 5 months. The topographic changes in an electroencephalogram (EEG) after long-term use of the virtual reality (VR)-based BCI were also assessed. Our originally developed BCI system was used to classify an EEG recorded over the sensorimotor cortex in real time and estimate the user's motor intention (MI) in 3 different limb movements: feet, left hand, and right hand. An avatar in the internet-based VR was controlled in accordance with the results of the EEG classification by the BCI. The subject was trained to control his avatar via the BCI by strolling in the VR for 1 hour a day and then continued the same training twice a month at his home. RESULTS: After the training, the error rate of the EEG classification decreased from 40% to 28%. The subject successfully walked around in the VR using only his MI and chatted with other users through a voice-chat function embedded in the internet-based VR. With this improvement in BCI control, event-related desynchronization (ERD) following MI was significantly enhanced (p < 0.01) for feet MI (from -29% to -55%), left-hand MI (from -23% to -42%), and right-hand MI (from -22% to -51%). CONCLUSIONS: These results show that our subject with severe MD was able to learn to control his EEG signal and communicate with other users through use of VR navigation and suggest that an internet-based VR has the potential to provide paralyzed people with the opportunity for easy communication.

Aug 17, 2010

Using mirror visual feedback and virtual reality to treat fibromyalgia

Using mirror visual feedback and virtual reality to treat fibromyalgia.

Med Hypotheses. 2010 Aug 5;

Authors: Ramachandran VS, Seckel EL

Fibromyalgia is a condition characterized by long term body-wide pain and tender points in joints, muscles and soft tissues. Other symptoms include chronic fatigue, morning stiffness, and depression. It is well known that these symptoms are exacerbated under periods of high stress. When pain becomes severe enough, the mind can enter what is known as a dissociative state, characterized by depersonalization - the feeling of detachment from one's physical body and the illusion of watching one's physical body from outside. In evolutionary terms, dissociative states are thought to be an adaptive mechanism to mentally distance oneself from pain, often during trauma. Similar dissociative experiences are reported by subjects who have used psychoactive drugs such as ketamine. We have previously used non-invasive mirror visual feedback to treat subjects with chronic pain from phantom limbs and suggested its use for complex regional pain syndrome: once considered intractable pain. We wondered whether such methods would work to alleviate the chronic pain of fibromyalgia. We tested mirror visual feedback on one fibromyalgia patient. On 15 trials, the patient's lower limb pain rating (on a scale from 1 to 10) decreased significantly. These preliminary results suggest that non-invasive dissociative anesthetics such as VR goggles, ketamine, and mirror visual feedback could be used to alleviate chronic pain from fibromyalgia. This would furnish us with a better understanding of the mechanism by which external visual feedback interacts with the internal physical manifestation of pain.